Dynamic RGB-D Mapping
نویسندگان
چکیده
Localization and mapping has been an area of great importance and interest to the robotics and computer vision community. It has traditionally been accomplished with range sensors such as lasers and sonars. Recent improvements in processing power coupled with advancements in image matching and motion estimation has allowed development of vision based localization techniques. Despite much progress, there are disadvantages to both range sensing and vision techniques making localization and mapping that is inexpensive and robust hard to attain. With the advent of RGB-D cameras which provide synchronized range and video data, localization and mapping is now able to exploit both range data as well as RGB features. This thesis exploits the strengths of vision and range sensing localization and mapping strategies and proposes novel algorithms using RGB-D cameras. We show how to combine existing strategies and present through evaluation of the resulting algorithms against a dataset of RGB-D benchmarks. Lastly we demonstrate the proposed algorithm on a challenging indoor dataset and demonstrate improvements where either pure range sensing or vision techniques perform poorly.
منابع مشابه
6D Visual SLAM for RGB-D Sensors
This paper presents an approach to 6-DOF simultaneous localization and mapping (SLAM) particularly suited for collision avoidance in visually guided robotic manipulation tasks in dynamic or unknown environments. We exploit the properties of novel RGB-D sensors such as the Microsoft Kinect to build highly accurate voxel maps.
متن کاملSolution to the SLAM Problem in Low Dynamic Environments Using a Pose Graph and an RGB-D Sensor
In this study, we propose a solution to the simultaneous localization and mapping (SLAM) problem in low dynamic environments by using a pose graph and an RGB-D (red-green-blue depth) sensor. The low dynamic environments refer to situations in which the positions of objects change over long intervals. Therefore, in the low dynamic environments, robots have difficulty recognizing the repositionin...
متن کاملمدلسازی صفحهای محیطهای داخلی با استفاده از تصاویر RGB-D
In robotic applications and especially 3D map generation of indoor environments, analyzing RGB-D images have become a key problem. The mapping problem is one of the most important problems in creating autonomous mobile robots. Autonomous mobile robots are used in mine excavation, rescue missions in collapsed buildings and even planets’ exploration. Furthermore, indoor mapping is beneficial in f...
متن کاملStaticFusion: Background Reconstruction for Dense RGB-D SLAM in Dynamic Environments
In this paper we propose a method for robust dense RGB-D SLAM in dynamic environments which detects moving objects and simultaneously reconstructs the background structure. Dynamic environments are challenging for visual SLAM as moving objects can impair camera pose tracking and cause corruptions to be integrated into the map. While most methods employ implicit robust penalizers or outlier filt...
متن کاملRGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments
RGB-D cameras (such as the Microsoft Kinect) are novel sensing systems that capture RGB images along with per-pixel depth information. In this paper we investigate how such cameras can be used for building dense 3D maps of indoor environments. Such maps have applications in robot navigation, manipulation, semantic mapping, and telepresence. We present RGB-D Mapping, a full 3D mapping system tha...
متن کامل